#ifndef __TREESOCKET_H__ #define __TREESOCKET_H__ #include "configreader.h" #include "users.h" #include "channels.h" #include "modules.h" #include "commands/cmd_whois.h" #include "commands/cmd_stats.h" #include "socket.h" #include "inspircd.h" #include "wildcard.h" #include "xline.h" #include "transport.h" #include "m_spanningtree/utils.h" /* * The server list in InspIRCd is maintained as two structures * which hold the data in different ways. Most of the time, we * want to very quicky obtain three pieces of information: * * (1) The information on a server * (2) The information on the server we must send data through * to actually REACH the server we're after * (3) Potentially, the child/parent objects of this server * * The InspIRCd spanning protocol provides easy access to these * by storing the data firstly in a recursive structure, where * each item references its parent item, and a dynamic list * of child items, and another structure which stores the items * hashed, linearly. This means that if we want to find a server * by name quickly, we can look it up in the hash, avoiding * any O(n) lookups. If however, during a split or sync, we want * to apply an operation to a server, and any of its child objects * we can resort to recursion to walk the tree structure. * Any socket can have one of five states at any one time. * The LISTENER state indicates a socket which is listening * for connections. It cannot receive data itself, only incoming * sockets. * The CONNECTING state indicates an outbound socket which is * waiting to be writeable. * The WAIT_AUTH_1 state indicates the socket is outbound and * has successfully connected, but has not yet sent and received * SERVER strings. * The WAIT_AUTH_2 state indicates that the socket is inbound * (allocated by a LISTENER) but has not yet sent and received * SERVER strings. * The CONNECTED state represents a fully authorized, fully * connected server. */ enum ServerState { LISTENER, CONNECTING, WAIT_AUTH_1, WAIT_AUTH_2, CONNECTED }; /** Every SERVER connection inbound or outbound is represented by * an object of type TreeSocket. * TreeSockets, being inherited from InspSocket, can be tied into * the core socket engine, and we cn therefore receive activity events * for them, just like activex objects on speed. (yes really, that * is a technical term!) Each of these which relates to a locally * connected server is assocated with it, by hooking it onto a * TreeSocket class using its constructor. In this way, we can * maintain a list of servers, some of which are directly connected, * some of which are not. */ class TreeSocket : public InspSocket { SpanningTreeUtilities* Utils; std::string myhost; std::string in_buffer; ServerState LinkState; std::string InboundServerName; std::string InboundDescription; int num_lost_users; int num_lost_servers; time_t NextPing; bool LastPingWasGood; bool bursting; unsigned int keylength; std::string ModuleList; std::map CapKeys; Module* Hook; public: /** Because most of the I/O gubbins are encapsulated within * InspSocket, we just call the superclass constructor for * most of the action, and append a few of our own values * to it. */ TreeSocket(SpanningTreeUtilities* Util, InspIRCd* SI, std::string host, int port, bool listening, unsigned long maxtime, Module* HookMod = NULL); TreeSocket(SpanningTreeUtilities* Util, InspIRCd* SI, std::string host, int port, bool listening, unsigned long maxtime, const std::string &ServerName, const std::string &bindto, Module* HookMod = NULL); /** When a listening socket gives us a new file descriptor, * we must associate it with a socket without creating a new * connection. This constructor is used for this purpose. */ TreeSocket(SpanningTreeUtilities* Util, InspIRCd* SI, int newfd, char* ip, Module* HookMod = NULL); ServerState GetLinkState(); Module* GetHook(); ~TreeSocket(); /** When an outbound connection finishes connecting, we receive * this event, and must send our SERVER string to the other * side. If the other side is happy, as outlined in the server * to server docs on the inspircd.org site, the other side * will then send back its own server string. */ virtual bool OnConnected(); virtual void OnError(InspSocketError e); virtual int OnDisconnect(); /** Recursively send the server tree with distances as hops. * This is used during network burst to inform the other server * (and any of ITS servers too) of what servers we know about. * If at any point any of these servers already exist on the other * end, our connection may be terminated. The hopcounts given * by this function are relative, this doesn't matter so long as * they are all >1, as all the remote servers re-calculate them * to be relative too, with themselves as hop 0. */ void SendServers(TreeServer* Current, TreeServer* s, int hops); std::string MyCapabilities(); void SendCapabilities(); /* Check a comma seperated list for an item */ bool HasItem(const std::string &list, const std::string &item); /* Isolate and return the elements that are different between two comma seperated lists */ std::string ListDifference(const std::string &one, const std::string &two); bool Capab(const std::deque ¶ms); /** This function forces this server to quit, removing this server * and any users on it (and servers and users below that, etc etc). * It's very slow and pretty clunky, but luckily unless your network * is having a REAL bad hair day, this function shouldnt be called * too many times a month ;-) */ void SquitServer(std::string &from, TreeServer* Current); /** This is a wrapper function for SquitServer above, which * does some validation first and passes on the SQUIT to all * other remaining servers. */ void Squit(TreeServer* Current, const std::string &reason); /** FMODE command - server mode with timestamp checks */ bool ForceMode(const std::string &source, std::deque ¶ms); /** FTOPIC command */ bool ForceTopic(const std::string &source, std::deque ¶ms); /** FJOIN, similar to TS6 SJOIN, but not quite. */ bool ForceJoin(const std::string &source, std::deque ¶ms); /** NICK command */ bool IntroduceClient(const std::string &source, std::deque ¶ms); /** Send one or more FJOINs for a channel of users. * If the length of a single line is more than 480-NICKMAX * in length, it is split over multiple lines. */ void SendFJoins(TreeServer* Current, chanrec* c); /** Send G, Q, Z and E lines */ void SendXLines(TreeServer* Current); /** Send channel modes and topics */ void SendChannelModes(TreeServer* Current); /** send all users and their oper state/modes */ void SendUsers(TreeServer* Current); /** This function is called when we want to send a netburst to a local * server. There is a set order we must do this, because for example * users require their servers to exist, and channels require their * users to exist. You get the idea. */ void DoBurst(TreeServer* s); /** This function is called when we receive data from a remote * server. We buffer the data in a std::string (it doesnt stay * there for long), reading using InspSocket::Read() which can * read up to 16 kilobytes in one operation. * * IF THIS FUNCTION RETURNS FALSE, THE CORE CLOSES AND DELETES * THE SOCKET OBJECT FOR US. */ virtual bool OnDataReady(); int WriteLine(std::string line); /* Handle ERROR command */ bool Error(std::deque ¶ms); /** remote MOTD. leet, huh? */ bool Motd(const std::string &prefix, std::deque ¶ms); /** remote ADMIN. leet, huh? */ bool Admin(const std::string &prefix, std::deque ¶ms); bool Stats(const std::string &prefix, std::deque ¶ms); /** Because the core won't let users or even SERVERS set +o, * we use the OPERTYPE command to do this. */ bool OperType(const std::string &prefix, std::deque ¶ms); /** Because Andy insists that services-compatible servers must * implement SVSNICK and SVSJOIN, that's exactly what we do :p */ bool ForceNick(const std::string &prefix, std::deque ¶ms); /* * Remote SQUIT (RSQUIT). Routing works similar to SVSNICK: Route it to the server that the target is connected to locally, * then let that server do the dirty work (squit it!). Example: * A -> B -> C -> D: oper on A squits D, A routes to B, B routes to C, C notices D connected locally, kills it. -- w00t */ bool RemoteSquit(const std::string &prefix, std::deque ¶ms); bool ServiceJoin(const std::string &prefix, std::deque ¶ms); bool RemoteRehash(const std::string &prefix, std::deque ¶ms); bool RemoteKill(const std::string &prefix, std::deque ¶ms); bool LocalPong(const std::string &prefix, std::deque ¶ms); bool MetaData(const std::string &prefix, std::deque ¶ms); bool ServerVersion(const std::string &prefix, std::deque ¶ms); bool ChangeHost(const std::string &prefix, std::deque ¶ms); bool AddLine(const std::string &prefix, std::deque ¶ms); bool ChangeName(const std::string &prefix, std::deque ¶ms); bool Whois(const std::string &prefix, std::deque ¶ms); bool Push(const std::string &prefix, std::deque ¶ms); bool HandleSetTime(const std::string &prefix, std::deque ¶ms); bool Time(const std::string &prefix, std::deque ¶ms); bool LocalPing(const std::string &prefix, std::deque ¶ms); bool RemoveStatus(const std::string &prefix, std::deque ¶ms); bool RemoteServer(const std::string &prefix, std::deque ¶ms); bool Outbound_Reply_Server(std::deque ¶ms); bool Inbound_Server(std::deque ¶ms); void Split(const std::string &line, std::deque &n); bool ProcessLine(std::string &line); virtual std::string GetName(); virtual void OnTimeout(); virtual void OnClose(); virtual int OnIncomingConnection(int newsock, char* ip); }; #endif