/* +------------------------------------+ * | Inspire Internet Relay Chat Daemon | * +------------------------------------+ * * InspIRCd is copyright (C) 2002-2004 ChatSpike-Dev. * E-mail: * * * * * Written by Craig Edwards, Craig McLure, and others. * This program is free but copyrighted software; see * the file COPYING for details. * * --------------------------------------------------- */ #include #include #include #include #include #include "users.h" #include "channels.h" #include "modules.h" #include "helperfuncs.h" #include "inspircd.h" #include "configreader.h" #include "m_sqlv2.h" /* $ModDesc: PostgreSQL Service Provider module for all other m_sql* modules, uses v2 of the SQL API */ /* $CompileFlags: -I`pg_config --includedir` */ /* $LinkerFlags: -L`pg_config --libdir` -lpq */ /* UGH, UGH, UGH, UGH, UGH, UGH * I'm having trouble seeing how I * can avoid this. The core-defined * constructors for InspSocket just * aren't suitable...and if I'm * reimplementing them I need this so * I can access the socket engine :\ */ extern InspIRCd* ServerInstance; InspSocket* socket_ref[MAX_DESCRIPTORS]; /* Forward declare, so we can have the typedef neatly at the top */ class SQLConn; /* Also needs forward declaration, as it's used inside SQLconn */ class ModulePgSQL; typedef std::map ConnMap; /* CREAD, Connecting and wants read event * CWRITE, Connecting and wants write event * WREAD, Connected/Working and wants read event * WWRITE, Connected/Working and wants write event */ enum SQLstatus { CREAD, CWRITE, WREAD, WWRITE }; /** QueryQueue, a queue of queries waiting to be executed. * This maintains two queues internally, one for 'priority' * queries and one for less important ones. Each queue has * new queries appended to it and ones to execute are popped * off the front. This keeps them flowing round nicely and no * query should ever get 'stuck' for too long. If there are * queries in the priority queue they will be executed first, * 'unimportant' queries will only be executed when the * priority queue is empty. * * We store lists of SQLrequest's here, by value as we want to avoid storing * any data allocated inside the client module (in case that module is unloaded * while the query is in progress). * * Because we want to work on the current SQLrequest in-situ, we need a way * of accessing the request we are currently processing, QueryQueue::front(), * but that call needs to always return the same request until that request * is removed from the queue, this is what the 'which' variable is. New queries are * always added to the back of one of the two queues, but if when front() * is first called then the priority queue is empty then front() will return * a query from the normal queue, but if a query is then added to the priority * queue then front() must continue to return the front of the *normal* queue * until pop() is called. */ class QueryQueue : public classbase { private: std::deque priority; /* The priority queue */ std::deque normal; /* The 'normal' queue */ enum { PRI, NOR, NON } which; /* Which queue the currently active element is at the front of */ public: QueryQueue() : which(NON) { } void push(const SQLrequest &q) { log(DEBUG, "QueryQueue::push(): Adding %s query to queue: %s", ((q.pri) ? "priority" : "non-priority"), q.query.c_str()); if(q.pri) priority.push_back(q); else normal.push_back(q); } void pop() { if((which == PRI) && priority.size()) { priority.pop_front(); } else if((which == NOR) && normal.size()) { normal.pop_front(); } /* Reset this */ which = NON; /* Silently do nothing if there was no element to pop() */ } SQLrequest& front() { switch(which) { case PRI: return priority.front(); case NOR: return normal.front(); default: if(priority.size()) { which = PRI; return priority.front(); } if(normal.size()) { which = NOR; return normal.front(); } /* This will probably result in a segfault, * but the caller should have checked totalsize() * first so..meh - moron :p */ return priority.front(); } } std::pair size() { return std::make_pair(priority.size(), normal.size()); } int totalsize() { return priority.size() + normal.size(); } }; /** PgSQLresult is a subclass of the mostly-pure-virtual class SQLresult. * All SQL providers must create their own subclass and define it's methods using that * database library's data retriveal functions. The aim is to avoid a slow and inefficient process * of converting all data to a common format before it reaches the result structure. This way * data is passes to the module nearly as directly as if it was using the API directly itself. */ class PgSQLresult : public SQLresult { PGresult* res; public: PgSQLresult(Module* self, Module* to, PGresult* result) : SQLresult(self, to), res(result) { int rows = PQntuples(res); int cols = PQnfields(res); log(DEBUG, "Created new PgSQL result; %d rows, %d columns", rows, cols); for (int r = 0; r < rows; r++) { log(DEBUG, "Row %d:", r); for(int i = 0; i < cols; i++) { log(DEBUG, "\t[%s]: %s", PQfname(result, i), PQgetvalue(result, r, i)); } } } ~PgSQLresult() { PQclear(res); } virtual int Rows() { return PQntuples(res); } }; /** SQLConn represents one SQL session. * Each session has its own persistent connection to the database. * This is a subclass of InspSocket so it can easily recieve read/write events from the core socket * engine, unlike the original MySQL module this module does not block. Ever. It gets a mild stabbing * if it dares to. */ class SQLConn : public InspSocket { private: ModulePgSQL* us; /* Pointer to the SQL provider itself */ Server* Srv; /* Server* for..uhm..something, maybe */ std::string dbhost; /* Database server hostname */ unsigned int dbport; /* Database server port */ std::string dbname; /* Database name */ std::string dbuser; /* Database username */ std::string dbpass; /* Database password */ bool ssl; /* If we should require SSL */ PGconn* sql; /* PgSQL database connection handle */ SQLstatus status; /* PgSQL database connection status */ bool qinprog;/* If there is currently a query in progress */ QueryQueue queue; /* Queue of queries waiting to be executed on this connection */ public: /* This class should only ever be created inside this module, using this constructor, so we don't have to worry about the default ones */ SQLConn(ModulePgSQL* self, Server* srv, const std::string &h, unsigned int p, const std::string &d, const std::string &u, const std::string &pwd, bool s); ~SQLConn(); bool DoResolve(); bool DoConnect(); virtual void Close(); bool DoPoll(); bool DoConnectedPoll(); void ShowStatus(); virtual bool OnDataReady(); virtual bool OnWriteReady(); virtual bool OnConnected(); bool DoEvent(); std::string MkInfoStr(); const char* StatusStr(); SQLerror DoQuery(const SQLrequest &req); SQLerror Query(const SQLrequest &req); }; class ModulePgSQL : public Module { private: Server* Srv; ConnMap connections; unsigned long currid; char* sqlsuccess; public: ModulePgSQL(Server* Me) : Module::Module(Me), Srv(Me), currid(0) { log(DEBUG, "%s 'SQL' feature", Srv->PublishFeature("SQL", this) ? "Published" : "Couldn't publish"); log(DEBUG, "%s 'PgSQL' feature", Srv->PublishFeature("PgSQL", this) ? "Published" : "Couldn't publish"); sqlsuccess = new char[strlen(SQLSUCCESS)+1]; strcpy(sqlsuccess, SQLSUCCESS); OnRehash(""); } void Implements(char* List) { List[I_OnRequest] = List[I_OnRehash] = List[I_OnUserRegister] = List[I_OnCheckReady] = List[I_OnUserDisconnect] = 1; } virtual void OnRehash(const std::string ¶meter) { ConfigReader conf; /* Delete all the SQLConn objects in the connection lists, * this will call their destructors where they can handle * closing connections and such. */ for(ConnMap::iterator iter = connections.begin(); iter != connections.end(); iter++) { DELETE(iter->second); } /* Empty out our list of connections */ connections.clear(); for(int i = 0; i < conf.Enumerate("database"); i++) { std::string id; SQLConn* newconn; id = conf.ReadValue("database", "id", i); newconn = new SQLConn(this, Srv, conf.ReadValue("database", "hostname", i), conf.ReadInteger("database", "port", i, true), conf.ReadValue("database", "name", i), conf.ReadValue("database", "username", i), conf.ReadValue("database", "password", i), conf.ReadFlag("database", "ssl", i)); connections.insert(std::make_pair(id, newconn)); } } virtual char* OnRequest(Request* request) { if(strcmp(SQLREQID, request->GetData()) == 0) { SQLrequest* req = (SQLrequest*)request; ConnMap::iterator iter; log(DEBUG, "Got query: '%s' on id '%s'", req->query.c_str(), req->dbid.c_str()); if((iter = connections.find(req->dbid)) != connections.end()) { /* Execute query */ req->error = iter->second->Query(*req); req->id = NewID(); return (req->error.Id() == NO_ERROR) ? sqlsuccess : NULL; } else { req->error.Id(BAD_DBID); return NULL; } } log(DEBUG, "Got unsupported API version string: %s", request->GetData()); return NULL; } unsigned long NewID() { if (currid+1 == 0) currid++; return ++currid; } virtual Version GetVersion() { return Version(1, 0, 0, 0, VF_VENDOR|VF_SERVICEPROVIDER); } virtual ~ModulePgSQL() { DELETE(sqlsuccess); } }; SQLConn::SQLConn(ModulePgSQL* self, Server* srv, const std::string &h, unsigned int p, const std::string &d, const std::string &u, const std::string &pwd, bool s) : InspSocket::InspSocket(), us(self), Srv(srv), dbhost(h), dbport(p), dbname(d), dbuser(u), dbpass(pwd), ssl(s), sql(NULL), status(CWRITE), qinprog(false) { log(DEBUG, "Creating new PgSQL connection to database %s on %s:%u (%s/%s)", dbname.c_str(), dbhost.c_str(), dbport, dbuser.c_str(), dbpass.c_str()); /* Some of this could be reviewed, unsure if I need to fill 'host' etc... * just copied this over from the InspSocket constructor. */ strlcpy(this->host, dbhost.c_str(), MAXBUF); this->port = dbport; this->ClosePending = false; if(!inet_aton(this->host, &this->addy)) { /* Its not an ip, spawn the resolver. * PgSQL doesn't do nonblocking DNS * lookups, so we do it for it. */ log(DEBUG,"Attempting to resolve %s", this->host); this->dns.SetNS(Srv->GetConfig()->DNSServer); this->dns.ForwardLookupWithFD(this->host, fd); this->state = I_RESOLVING; socket_ref[this->fd] = this; return; } else { log(DEBUG,"No need to resolve %s", this->host); strlcpy(this->IP, this->host, MAXBUF); if(!this->DoConnect()) { throw ModuleException("Connect failed"); } } } SQLConn::~SQLConn() { Close(); } bool SQLConn::DoResolve() { log(DEBUG, "Checking for DNS lookup result"); if(this->dns.HasResult()) { std::string res_ip = dns.GetResultIP(); if(res_ip.length()) { log(DEBUG, "Got result: %s", res_ip.c_str()); strlcpy(this->IP, res_ip.c_str(), MAXBUF); dbhost = res_ip; socket_ref[this->fd] = NULL; return this->DoConnect(); } else { log(DEBUG, "DNS lookup failed, dying horribly"); Close(); return false; } } else { log(DEBUG, "No result for lookup yet!"); return true; } } bool SQLConn::DoConnect() { log(DEBUG, "SQLConn::DoConnect()"); if(!(sql = PQconnectStart(MkInfoStr().c_str()))) { log(DEBUG, "Couldn't allocate PGconn structure, aborting: %s", PQerrorMessage(sql)); Close(); return false; } if(PQstatus(sql) == CONNECTION_BAD) { log(DEBUG, "PQconnectStart failed: %s", PQerrorMessage(sql)); Close(); return false; } ShowStatus(); if(PQsetnonblocking(sql, 1) == -1) { log(DEBUG, "Couldn't set connection nonblocking: %s", PQerrorMessage(sql)); Close(); return false; } /* OK, we've initalised the connection, now to get it hooked into the socket engine * and then start polling it. */ log(DEBUG, "Old DNS socket: %d", this->fd); this->fd = PQsocket(sql); log(DEBUG, "New SQL socket: %d", this->fd); if(this->fd <= -1) { log(DEBUG, "PQsocket says we have an invalid FD: %d", this->fd); Close(); return false; } this->state = I_CONNECTING; ServerInstance->SE->AddFd(this->fd,false,X_ESTAB_MODULE); socket_ref[this->fd] = this; /* Socket all hooked into the engine, now to tell PgSQL to start connecting */ return DoPoll(); } void SQLConn::Close() { log(DEBUG,"SQLConn::Close"); if(this->fd > 01) socket_ref[this->fd] = NULL; this->fd = -1; this->state = I_ERROR; this->OnError(I_ERR_SOCKET); this->ClosePending = true; if(sql) { PQfinish(sql); sql = NULL; } return; } bool SQLConn::DoPoll() { switch(PQconnectPoll(sql)) { case PGRES_POLLING_WRITING: log(DEBUG, "PGconnectPoll: PGRES_POLLING_WRITING"); WantWrite(); status = CWRITE; return DoPoll(); case PGRES_POLLING_READING: log(DEBUG, "PGconnectPoll: PGRES_POLLING_READING"); status = CREAD; break; case PGRES_POLLING_FAILED: log(DEBUG, "PGconnectPoll: PGRES_POLLING_FAILED: %s", PQerrorMessage(sql)); return false; case PGRES_POLLING_OK: log(DEBUG, "PGconnectPoll: PGRES_POLLING_OK"); status = WWRITE; return DoConnectedPoll(); default: log(DEBUG, "PGconnectPoll: wtf?"); break; } return true; } bool SQLConn::DoConnectedPoll() { if(!qinprog && queue.totalsize()) { /* There's no query currently in progress, and there's queries in the queue. */ SQLrequest& query = queue.front(); DoQuery(query); } if(PQconsumeInput(sql)) { log(DEBUG, "PQconsumeInput succeeded"); if(PQisBusy(sql)) { log(DEBUG, "Still busy processing command though"); } else if(qinprog) { log(DEBUG, "Looks like we have a result to process!"); /* Grab the request we're processing */ SQLrequest& query = queue.front(); /* Get a pointer to the module we're about to return the result to */ Module* to = query.GetSource(); /* Fetch the result.. */ PGresult* result = PQgetResult(sql); /* PgSQL would allow a query string to be sent which has multiple * queries in it, this isn't portable across database backends and * we don't want modules doing it. But just in case we make sure we * drain any results there are and just use the last one. * If the module devs are behaving there will only be one result. */ while (PGresult* temp = PQgetResult(sql)) { PQclear(result); result = temp; } if(to) { /* ..and the result */ log(DEBUG, "Got result, status code: %s; error message: %s", PQresStatus(PQresultStatus(result)), PQresultErrorMessage(result)); PgSQLresult reply(us, to, result); reply.Send(); /* PgSQLresult's destructor will free the PGresult */ } else { /* If the client module is unloaded partway through a query then the provider will set * the pointer to NULL. We cannot just cancel the query as the result will still come * through at some point...and it could get messy if we play with invalid pointers... */ log(DEBUG, "Looks like we're handling a zombie query from a module which unloaded before it got a result..fun. ID: %lu", query.id); PQclear(result); } qinprog = false; queue.pop(); DoConnectedPoll(); } return true; } log(DEBUG, "PQconsumeInput failed: %s", PQerrorMessage(sql)); return false; } void SQLConn::ShowStatus() { switch(PQstatus(sql)) { case CONNECTION_STARTED: log(DEBUG, "PQstatus: CONNECTION_STARTED: Waiting for connection to be made."); break; case CONNECTION_MADE: log(DEBUG, "PQstatus: CONNECTION_MADE: Connection OK; waiting to send."); break; case CONNECTION_AWAITING_RESPONSE: log(DEBUG, "PQstatus: CONNECTION_AWAITING_RESPONSE: Waiting for a response from the server."); break; case CONNECTION_AUTH_OK: log(DEBUG, "PQstatus: CONNECTION_AUTH_OK: Received authentication; waiting for backend start-up to finish."); break; case CONNECTION_SSL_STARTUP: log(DEBUG, "PQstatus: CONNECTION_SSL_STARTUP: Negotiating SSL encryption."); break; case CONNECTION_SETENV: log(DEBUG, "PQstatus: CONNECTION_SETENV: Negotiating environment-driven parameter settings."); break; default: log(DEBUG, "PQstatus: ???"); } } bool SQLConn::OnDataReady() { /* Always return true here, false would close the socket - we need to do that ourselves with the pgsql API */ log(DEBUG, "OnDataReady(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::OnWriteReady() { /* Always return true here, false would close the socket - we need to do that ourselves with the pgsql API */ log(DEBUG, "OnWriteReady(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::OnConnected() { log(DEBUG, "OnConnected(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::DoEvent() { bool ret; if((status == CREAD) || (status == CWRITE)) { ret = DoPoll(); } else { ret = DoConnectedPoll(); } switch(PQflush(sql)) { case -1: log(DEBUG, "Error flushing write queue: %s", PQerrorMessage(sql)); break; case 0: log(DEBUG, "Successfully flushed write queue (or there was nothing to write)"); break; case 1: log(DEBUG, "Not all of the write queue written, triggering write event so we can have another go"); WantWrite(); break; } return ret; } std::string SQLConn::MkInfoStr() { std::ostringstream conninfo("connect_timeout = '2'"); if(dbhost.length()) conninfo << " hostaddr = '" << dbhost << "'"; if(dbport) conninfo << " port = '" << dbport << "'"; if(dbname.length()) conninfo << " dbname = '" << dbname << "'"; if(dbuser.length()) conninfo << " user = '" << dbuser << "'"; if(dbpass.length()) conninfo << " password = '" << dbpass << "'"; if(ssl) conninfo << " sslmode = 'require'"; return conninfo.str(); } const char* SQLConn::StatusStr() { if(status == CREAD) return "CREAD"; if(status == CWRITE) return "CWRITE"; if(status == WREAD) return "WREAD"; if(status == WWRITE) return "WWRITE"; return "Err...what, erm..BUG!"; } SQLerror SQLConn::DoQuery(const SQLrequest &req) { if((status == WREAD) || (status == WWRITE)) { if(!qinprog) { if(PQsendQuery(sql, req.query.c_str())) { log(DEBUG, "Dispatched query: %s", req.query.c_str()); qinprog = true; return SQLerror(); } else { log(DEBUG, "Failed to dispatch query: %s", PQerrorMessage(sql)); return SQLerror(QSEND_FAIL, PQerrorMessage(sql)); } } } log(DEBUG, "Can't query until connection is complete"); return SQLerror(BAD_CONN, "Can't query until connection is complete"); } SQLerror SQLConn::Query(const SQLrequest &req) { queue.push(req); if(!qinprog && queue.totalsize()) { /* There's no query currently in progress, and there's queries in the queue. */ SQLrequest& query = queue.front(); return DoQuery(query); } else { return SQLerror(); } } class ModulePgSQLFactory : public ModuleFactory { public: ModulePgSQLFactory() { } ~ModulePgSQLFactory() { } virtual Module * CreateModule(Server* Me) { return new ModulePgSQL(Me); } }; extern "C" void * init_module( void ) { return new ModulePgSQLFactory; }