/* +------------------------------------+ * | Inspire Internet Relay Chat Daemon | * +------------------------------------+ * * InspIRCd is copyright (C) 2002-2004 ChatSpike-Dev. * E-mail: * * * * * Written by Craig Edwards, Craig McLure, and others. * This program is free but copyrighted software; see * the file COPYING for details. * * --------------------------------------------------- */ #include #include #include #include #include #include #include "users.h" #include "channels.h" #include "modules.h" #include "helperfuncs.h" #include "inspircd.h" #include "configreader.h" #include "m_sqlv2.h" /* $ModDesc: PostgreSQL Service Provider module for all other m_sql* modules, uses v2 of the SQL API */ /* $CompileFlags: -I`pg_config --includedir` `perl extra/pgsql_config.pl` */ /* $LinkerFlags: -L`pg_config --libdir` -lpq */ /* UGH, UGH, UGH, UGH, UGH, UGH * I'm having trouble seeing how I * can avoid this. The core-defined * constructors for InspSocket just * aren't suitable...and if I'm * reimplementing them I need this so * I can access the socket engine :\ */ extern InspIRCd* ServerInstance; extern time_t TIME; /* Forward declare, so we can have the typedef neatly at the top */ class SQLConn; /* Also needs forward declaration, as it's used inside SQLconn */ class ModulePgSQL; typedef std::map ConnMap; /* CREAD, Connecting and wants read event * CWRITE, Connecting and wants write event * WREAD, Connected/Working and wants read event * WWRITE, Connected/Working and wants write event * RREAD, Resetting and wants read event * RWRITE, Resetting and wants write event */ enum SQLstatus { CREAD, CWRITE, WREAD, WWRITE, RREAD, RWRITE }; /** SQLhost, simple structure to store information about a SQL-connection-to-be * We use this struct simply to make it neater passing around host information * when we're creating connections and resolving hosts. * Rather than giving SQLresolver a parameter for every field here so it can in * turn call SQLConn's constructor with them all, both can simply use a SQLhost. */ class SQLhost { public: std::string id; /* Database handle id */ std::string host; /* Database server hostname */ unsigned int port; /* Database server port */ std::string name; /* Database name */ std::string user; /* Database username */ std::string pass; /* Database password */ bool ssl; /* If we should require SSL */ SQLhost() { } SQLhost(const std::string& i, const std::string& h, unsigned int p, const std::string& n, const std::string& u, const std::string& pa, bool s) : id(i), host(h), port(p), name(n), user(u), pass(pa), ssl(s) { } }; class SQLresolver : public Resolver { private: SQLhost host; ModulePgSQL* mod; public: SQLresolver(ModulePgSQL* m, Server* srv, const SQLhost& hi) : Resolver(hi.host, DNS_QUERY_FORWARD), host(hi), mod(m) { } virtual void OnLookupComplete(const std::string &result); virtual void OnError(ResolverError e, const std::string &errormessage) { log(DEBUG, "DNS lookup failed (%s), dying horribly", errormessage.c_str()); } virtual ~SQLresolver() { } }; /** QueryQueue, a queue of queries waiting to be executed. * This maintains two queues internally, one for 'priority' * queries and one for less important ones. Each queue has * new queries appended to it and ones to execute are popped * off the front. This keeps them flowing round nicely and no * query should ever get 'stuck' for too long. If there are * queries in the priority queue they will be executed first, * 'unimportant' queries will only be executed when the * priority queue is empty. * * We store lists of SQLrequest's here, by value as we want to avoid storing * any data allocated inside the client module (in case that module is unloaded * while the query is in progress). * * Because we want to work on the current SQLrequest in-situ, we need a way * of accessing the request we are currently processing, QueryQueue::front(), * but that call needs to always return the same request until that request * is removed from the queue, this is what the 'which' variable is. New queries are * always added to the back of one of the two queues, but if when front() * is first called then the priority queue is empty then front() will return * a query from the normal queue, but if a query is then added to the priority * queue then front() must continue to return the front of the *normal* queue * until pop() is called. */ class QueryQueue : public classbase { private: typedef std::deque ReqDeque; ReqDeque priority; /* The priority queue */ ReqDeque normal; /* The 'normal' queue */ enum { PRI, NOR, NON } which; /* Which queue the currently active element is at the front of */ public: QueryQueue() : which(NON) { } void push(const SQLrequest &q) { log(DEBUG, "QueryQueue::push(): Adding %s query to queue: %s", ((q.pri) ? "priority" : "non-priority"), q.query.q.c_str()); if(q.pri) priority.push_back(q); else normal.push_back(q); } void pop() { if((which == PRI) && priority.size()) { priority.pop_front(); } else if((which == NOR) && normal.size()) { normal.pop_front(); } /* Reset this */ which = NON; /* Silently do nothing if there was no element to pop() */ } SQLrequest& front() { switch(which) { case PRI: return priority.front(); case NOR: return normal.front(); default: if(priority.size()) { which = PRI; return priority.front(); } if(normal.size()) { which = NOR; return normal.front(); } /* This will probably result in a segfault, * but the caller should have checked totalsize() * first so..meh - moron :p */ return priority.front(); } } std::pair size() { return std::make_pair(priority.size(), normal.size()); } int totalsize() { return priority.size() + normal.size(); } void PurgeModule(Module* mod) { DoPurgeModule(mod, priority); DoPurgeModule(mod, normal); } private: void DoPurgeModule(Module* mod, ReqDeque& q) { for(ReqDeque::iterator iter = q.begin(); iter != q.end(); iter++) { if(iter->GetSource() == mod) { if(iter->id == front().id) { /* It's the currently active query.. :x */ iter->SetSource(NULL); } else { /* It hasn't been executed yet..just remove it */ iter = q.erase(iter); } } } } }; /** PgSQLresult is a subclass of the mostly-pure-virtual class SQLresult. * All SQL providers must create their own subclass and define it's methods using that * database library's data retriveal functions. The aim is to avoid a slow and inefficient process * of converting all data to a common format before it reaches the result structure. This way * data is passes to the module nearly as directly as if it was using the API directly itself. */ class PgSQLresult : public SQLresult { PGresult* res; int currentrow; int rows; int cols; SQLfieldList* fieldlist; SQLfieldMap* fieldmap; public: PgSQLresult(Module* self, Module* to, unsigned long id, PGresult* result) : SQLresult(self, to, id), res(result), currentrow(0), fieldlist(NULL), fieldmap(NULL) { rows = PQntuples(res); cols = PQnfields(res); log(DEBUG, "Created new PgSQL result; %d rows, %d columns, %s affected", rows, cols, PQcmdTuples(res)); } ~PgSQLresult() { /* If we allocated these, free them... */ if(fieldlist) DELETE(fieldlist); if(fieldmap) DELETE(fieldmap); PQclear(res); } virtual int Rows() { if(!cols && !rows) { return atoi(PQcmdTuples(res)); } else { return rows; } } virtual int Cols() { return PQnfields(res); } virtual std::string ColName(int column) { char* name = PQfname(res, column); return (name) ? name : ""; } virtual int ColNum(const std::string &column) { int n = PQfnumber(res, column.c_str()); if(n == -1) { throw SQLbadColName(); } else { return n; } } virtual SQLfield GetValue(int row, int column) { char* v = PQgetvalue(res, row, column); if(v) { return SQLfield(std::string(v, PQgetlength(res, row, column)), PQgetisnull(res, row, column)); } else { log(DEBUG, "PQgetvalue returned a null pointer..nobody wants to tell us what this means"); throw SQLbadColName(); } } virtual SQLfieldList& GetRow() { /* In an effort to reduce overhead we don't actually allocate the list * until the first time it's needed...so... */ if(fieldlist) { fieldlist->clear(); } else { fieldlist = new SQLfieldList; } if(currentrow < PQntuples(res)) { int cols = PQnfields(res); for(int i = 0; i < cols; i++) { fieldlist->push_back(GetValue(currentrow, i)); } currentrow++; } return *fieldlist; } virtual SQLfieldMap& GetRowMap() { /* In an effort to reduce overhead we don't actually allocate the map * until the first time it's needed...so... */ if(fieldmap) { fieldmap->clear(); } else { fieldmap = new SQLfieldMap; } if(currentrow < PQntuples(res)) { int cols = PQnfields(res); for(int i = 0; i < cols; i++) { fieldmap->insert(std::make_pair(ColName(i), GetValue(currentrow, i))); } currentrow++; } return *fieldmap; } virtual SQLfieldList* GetRowPtr() { SQLfieldList* fl = new SQLfieldList; if(currentrow < PQntuples(res)) { int cols = PQnfields(res); for(int i = 0; i < cols; i++) { fl->push_back(GetValue(currentrow, i)); } currentrow++; } return fl; } virtual SQLfieldMap* GetRowMapPtr() { SQLfieldMap* fm = new SQLfieldMap; if(currentrow < PQntuples(res)) { int cols = PQnfields(res); for(int i = 0; i < cols; i++) { fm->insert(std::make_pair(ColName(i), GetValue(currentrow, i))); } currentrow++; } return fm; } virtual void Free(SQLfieldMap* fm) { DELETE(fm); } virtual void Free(SQLfieldList* fl) { DELETE(fl); } }; /** SQLConn represents one SQL session. * Each session has its own persistent connection to the database. * This is a subclass of InspSocket so it can easily recieve read/write events from the core socket * engine, unlike the original MySQL module this module does not block. Ever. It gets a mild stabbing * if it dares to. */ class SQLConn : public InspSocket { private: ModulePgSQL* us; /* Pointer to the SQL provider itself */ Server* Srv; /* Server* for..uhm..something, maybe */ std::string dbhost; /* Database server hostname */ unsigned int dbport; /* Database server port */ std::string dbname; /* Database name */ std::string dbuser; /* Database username */ std::string dbpass; /* Database password */ bool ssl; /* If we should require SSL */ PGconn* sql; /* PgSQL database connection handle */ SQLstatus status; /* PgSQL database connection status */ bool qinprog;/* If there is currently a query in progress */ QueryQueue queue; /* Queue of queries waiting to be executed on this connection */ time_t idle; /* Time we last heard from the database */ public: /* This class should only ever be created inside this module, using this constructor, so we don't have to worry about the default ones */ SQLConn(InspIRCd* SI, ModulePgSQL* self, Server* srv, const SQLhost& hostinfo); ~SQLConn(); bool DoConnect(); virtual void Close(); bool DoPoll(); bool DoConnectedPoll(); bool DoResetPoll(); void ShowStatus(); virtual bool OnDataReady(); virtual bool OnWriteReady(); virtual bool OnConnected(); bool DoEvent(); bool Reconnect(); std::string MkInfoStr(); const char* StatusStr(); SQLerror DoQuery(SQLrequest &req); SQLerror Query(const SQLrequest &req); void OnUnloadModule(Module* mod); }; class ModulePgSQL : public Module { private: Server* Srv; ConnMap connections; unsigned long currid; char* sqlsuccess; public: ModulePgSQL(Server* Me) : Module::Module(Me), Srv(Me), currid(0) { log(DEBUG, "%s 'SQL' feature", Srv->PublishFeature("SQL", this) ? "Published" : "Couldn't publish"); sqlsuccess = new char[strlen(SQLSUCCESS)+1]; strcpy(sqlsuccess, SQLSUCCESS); OnRehash(""); } void Implements(char* List) { List[I_OnUnloadModule] = List[I_OnRequest] = List[I_OnRehash] = List[I_OnUserRegister] = List[I_OnCheckReady] = List[I_OnUserDisconnect] = 1; } virtual void OnRehash(const std::string ¶meter) { ConfigReader conf; /* Delete all the SQLConn objects in the connection lists, * this will call their destructors where they can handle * closing connections and such. */ for(ConnMap::iterator iter = connections.begin(); iter != connections.end(); iter++) { DELETE(iter->second); } /* Empty out our list of connections */ connections.clear(); for(int i = 0; i < conf.Enumerate("database"); i++) { SQLhost host; int ipvalid; insp_inaddr blargle; host.id = conf.ReadValue("database", "id", i); host.host = conf.ReadValue("database", "hostname", i); host.port = conf.ReadInteger("database", "port", i, true); host.name = conf.ReadValue("database", "name", i); host.user = conf.ReadValue("database", "username", i); host.pass = conf.ReadValue("database", "password", i); host.ssl = conf.ReadFlag("database", "ssl", i); ipvalid = insp_aton(host.host.c_str(), &blargle); if(ipvalid > 0) { /* The conversion succeeded, we were given an IP and we can give it straight to SQLConn */ this->AddConn(host); } else if(ipvalid == 0) { /* Conversion failed, assume it's a host */ SQLresolver* resolver; resolver = new SQLresolver(this, Srv, host); Srv->AddResolver(resolver); } else { /* Invalid address family, die horribly. */ log(DEBUG, "insp_aton failed returning -1, oh noes."); } } } void AddConn(const SQLhost& hi) { SQLConn* newconn; /* The conversion succeeded, we were given an IP and we can give it straight to SQLConn */ newconn = new SQLConn(ServerInstance, this, Srv, hi); connections.insert(std::make_pair(hi.id, newconn)); } virtual char* OnRequest(Request* request) { if(strcmp(SQLREQID, request->GetId()) == 0) { SQLrequest* req = (SQLrequest*)request; ConnMap::iterator iter; log(DEBUG, "Got query: '%s' with %d replacement parameters on id '%s'", req->query.q.c_str(), req->query.p.size(), req->dbid.c_str()); if((iter = connections.find(req->dbid)) != connections.end()) { /* Execute query */ req->id = NewID(); req->error = iter->second->Query(*req); return (req->error.Id() == NO_ERROR) ? sqlsuccess : NULL; } else { req->error.Id(BAD_DBID); return NULL; } } log(DEBUG, "Got unsupported API version string: %s", request->GetId()); return NULL; } virtual void OnUnloadModule(Module* mod, const std::string& name) { /* When a module unloads we have to check all the pending queries for all our connections * and set the Module* specifying where the query came from to NULL. If the query has already * been dispatched then when it is processed it will be dropped if the pointer is NULL. * * If the queries we find are not already being executed then we can simply remove them immediately. */ for(ConnMap::iterator iter = connections.begin(); iter != connections.end(); iter++) { iter->second->OnUnloadModule(mod); } } unsigned long NewID() { if (currid+1 == 0) currid++; return ++currid; } virtual Version GetVersion() { return Version(1, 0, 0, 0, VF_VENDOR|VF_SERVICEPROVIDER); } virtual ~ModulePgSQL() { DELETE(sqlsuccess); } }; SQLConn::SQLConn(InspIRCd* SI, ModulePgSQL* self, Server* srv, const SQLhost& hi) : InspSocket::InspSocket(SI), us(self), Srv(srv), dbhost(hi.host), dbport(hi.port), dbname(hi.name), dbuser(hi.user), dbpass(hi.pass), ssl(hi.ssl), sql(NULL), status(CWRITE), qinprog(false) { log(DEBUG, "Creating new PgSQL connection to database %s on %s:%u (%s/%s)", dbname.c_str(), dbhost.c_str(), dbport, dbuser.c_str(), dbpass.c_str()); /* Some of this could be reviewed, unsure if I need to fill 'host' etc... * just copied this over from the InspSocket constructor. */ strlcpy(this->host, dbhost.c_str(), MAXBUF); strlcpy(this->IP, dbhost.c_str(), MAXBUF); this->port = dbport; idle = TIME; this->ClosePending = false; log(DEBUG,"No need to resolve %s", this->host); if(!this->DoConnect()) { throw ModuleException("Connect failed"); } } SQLConn::~SQLConn() { Close(); } bool SQLConn::DoConnect() { log(DEBUG, "SQLConn::DoConnect()"); if(!(sql = PQconnectStart(MkInfoStr().c_str()))) { log(DEBUG, "Couldn't allocate PGconn structure, aborting: %s", PQerrorMessage(sql)); Close(); return false; } if(PQstatus(sql) == CONNECTION_BAD) { log(DEBUG, "PQconnectStart failed: %s", PQerrorMessage(sql)); Close(); return false; } ShowStatus(); if(PQsetnonblocking(sql, 1) == -1) { log(DEBUG, "Couldn't set connection nonblocking: %s", PQerrorMessage(sql)); Close(); return false; } /* OK, we've initalised the connection, now to get it hooked into the socket engine * and then start polling it. */ log(DEBUG, "Old DNS socket: %d", this->fd); this->fd = PQsocket(sql); log(DEBUG, "New SQL socket: %d", this->fd); if(this->fd <= -1) { log(DEBUG, "PQsocket says we have an invalid FD: %d", this->fd); Close(); return false; } this->state = I_CONNECTING; if (!ServerInstance->SE->AddFd(this->fd,false,X_ESTAB_MODULE)) { log(DEBUG, "A PQsocket cant be added to the socket engine!"); Close(); return false; } Instance->socket_ref[this->fd] = this; /* Socket all hooked into the engine, now to tell PgSQL to start connecting */ return DoPoll(); } void SQLConn::Close() { log(DEBUG,"SQLConn::Close"); if(this->fd > 01) Instance->socket_ref[this->fd] = NULL; this->fd = -1; this->state = I_ERROR; this->OnError(I_ERR_SOCKET); this->ClosePending = true; if(sql) { PQfinish(sql); sql = NULL; } return; } bool SQLConn::DoPoll() { switch(PQconnectPoll(sql)) { case PGRES_POLLING_WRITING: log(DEBUG, "PGconnectPoll: PGRES_POLLING_WRITING"); WantWrite(); status = CWRITE; return DoPoll(); case PGRES_POLLING_READING: log(DEBUG, "PGconnectPoll: PGRES_POLLING_READING"); status = CREAD; return true; case PGRES_POLLING_FAILED: log(DEBUG, "PGconnectPoll: PGRES_POLLING_FAILED: %s", PQerrorMessage(sql)); return false; case PGRES_POLLING_OK: log(DEBUG, "PGconnectPoll: PGRES_POLLING_OK"); status = WWRITE; return DoConnectedPoll(); default: log(DEBUG, "PGconnectPoll: wtf?"); return true; } } bool SQLConn::DoConnectedPoll() { if(!qinprog && queue.totalsize()) { /* There's no query currently in progress, and there's queries in the queue. */ SQLrequest& query = queue.front(); DoQuery(query); } if(PQconsumeInput(sql)) { log(DEBUG, "PQconsumeInput succeeded"); /* We just read stuff from the server, that counts as it being alive * so update the idle-since time :p */ idle = TIME; if(PQisBusy(sql)) { log(DEBUG, "Still busy processing command though"); } else if(qinprog) { log(DEBUG, "Looks like we have a result to process!"); /* Grab the request we're processing */ SQLrequest& query = queue.front(); log(DEBUG, "ID is %lu", query.id); /* Get a pointer to the module we're about to return the result to */ Module* to = query.GetSource(); /* Fetch the result.. */ PGresult* result = PQgetResult(sql); /* PgSQL would allow a query string to be sent which has multiple * queries in it, this isn't portable across database backends and * we don't want modules doing it. But just in case we make sure we * drain any results there are and just use the last one. * If the module devs are behaving there will only be one result. */ while (PGresult* temp = PQgetResult(sql)) { PQclear(result); result = temp; } if(to) { /* ..and the result */ PgSQLresult reply(us, to, query.id, result); log(DEBUG, "Got result, status code: %s; error message: %s", PQresStatus(PQresultStatus(result)), PQresultErrorMessage(result)); switch(PQresultStatus(result)) { case PGRES_EMPTY_QUERY: case PGRES_BAD_RESPONSE: case PGRES_FATAL_ERROR: reply.error.Id(QREPLY_FAIL); reply.error.Str(PQresultErrorMessage(result)); default:; /* No action, other values are not errors */ } reply.Send(); /* PgSQLresult's destructor will free the PGresult */ } else { /* If the client module is unloaded partway through a query then the provider will set * the pointer to NULL. We cannot just cancel the query as the result will still come * through at some point...and it could get messy if we play with invalid pointers... */ log(DEBUG, "Looks like we're handling a zombie query from a module which unloaded before it got a result..fun. ID: %lu", query.id); PQclear(result); } qinprog = false; queue.pop(); DoConnectedPoll(); } else { log(DEBUG, "Eh!? We just got a read event, and connection isn't busy..but no result :("); } return true; } else { /* I think we'll assume this means the server died...it might not, * but I think that any error serious enough we actually get here * deserves to reconnect [/excuse] * Returning true so the core doesn't try and close the connection. */ log(DEBUG, "PQconsumeInput failed: %s", PQerrorMessage(sql)); Reconnect(); return true; } } bool SQLConn::DoResetPoll() { switch(PQresetPoll(sql)) { case PGRES_POLLING_WRITING: log(DEBUG, "PGresetPoll: PGRES_POLLING_WRITING"); WantWrite(); status = CWRITE; return DoPoll(); case PGRES_POLLING_READING: log(DEBUG, "PGresetPoll: PGRES_POLLING_READING"); status = CREAD; return true; case PGRES_POLLING_FAILED: log(DEBUG, "PGresetPoll: PGRES_POLLING_FAILED: %s", PQerrorMessage(sql)); return false; case PGRES_POLLING_OK: log(DEBUG, "PGresetPoll: PGRES_POLLING_OK"); status = WWRITE; return DoConnectedPoll(); default: log(DEBUG, "PGresetPoll: wtf?"); return true; } } void SQLConn::ShowStatus() { switch(PQstatus(sql)) { case CONNECTION_STARTED: log(DEBUG, "PQstatus: CONNECTION_STARTED: Waiting for connection to be made."); break; case CONNECTION_MADE: log(DEBUG, "PQstatus: CONNECTION_MADE: Connection OK; waiting to send."); break; case CONNECTION_AWAITING_RESPONSE: log(DEBUG, "PQstatus: CONNECTION_AWAITING_RESPONSE: Waiting for a response from the server."); break; case CONNECTION_AUTH_OK: log(DEBUG, "PQstatus: CONNECTION_AUTH_OK: Received authentication; waiting for backend start-up to finish."); break; case CONNECTION_SSL_STARTUP: log(DEBUG, "PQstatus: CONNECTION_SSL_STARTUP: Negotiating SSL encryption."); break; case CONNECTION_SETENV: log(DEBUG, "PQstatus: CONNECTION_SETENV: Negotiating environment-driven parameter settings."); break; default: log(DEBUG, "PQstatus: ???"); } } bool SQLConn::OnDataReady() { /* Always return true here, false would close the socket - we need to do that ourselves with the pgsql API */ log(DEBUG, "OnDataReady(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::OnWriteReady() { /* Always return true here, false would close the socket - we need to do that ourselves with the pgsql API */ log(DEBUG, "OnWriteReady(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::OnConnected() { log(DEBUG, "OnConnected(): status = %s", StatusStr()); return DoEvent(); } bool SQLConn::Reconnect() { log(DEBUG, "Initiating reconnect"); if(PQresetStart(sql)) { /* Successfully initiatied database reconnect, * set flags so PQresetPoll() will be called appropriately */ status = RWRITE; qinprog = false; return true; } else { log(DEBUG, "Failed to initiate reconnect...fun"); return false; } } bool SQLConn::DoEvent() { bool ret; if((status == CREAD) || (status == CWRITE)) { ret = DoPoll(); } else if((status == RREAD) || (status == RWRITE)) { ret = DoResetPoll(); } else { ret = DoConnectedPoll(); } switch(PQflush(sql)) { case -1: log(DEBUG, "Error flushing write queue: %s", PQerrorMessage(sql)); break; case 0: log(DEBUG, "Successfully flushed write queue (or there was nothing to write)"); break; case 1: log(DEBUG, "Not all of the write queue written, triggering write event so we can have another go"); WantWrite(); break; } return ret; } std::string SQLConn::MkInfoStr() { std::ostringstream conninfo("connect_timeout = '2'"); if(dbhost.length()) conninfo << " hostaddr = '" << dbhost << "'"; if(dbport) conninfo << " port = '" << dbport << "'"; if(dbname.length()) conninfo << " dbname = '" << dbname << "'"; if(dbuser.length()) conninfo << " user = '" << dbuser << "'"; if(dbpass.length()) conninfo << " password = '" << dbpass << "'"; if(ssl) conninfo << " sslmode = 'require'"; return conninfo.str(); } const char* SQLConn::StatusStr() { if(status == CREAD) return "CREAD"; if(status == CWRITE) return "CWRITE"; if(status == WREAD) return "WREAD"; if(status == WWRITE) return "WWRITE"; return "Err...what, erm..BUG!"; } SQLerror SQLConn::DoQuery(SQLrequest &req) { if((status == WREAD) || (status == WWRITE)) { if(!qinprog) { /* Parse the command string and dispatch it */ /* Pointer to the buffer we screw around with substitution in */ char* query; /* Pointer to the current end of query, where we append new stuff */ char* queryend; /* Total length of the unescaped parameters */ unsigned int paramlen; paramlen = 0; for(ParamL::iterator i = req.query.p.begin(); i != req.query.p.end(); i++) { paramlen += i->size(); } /* To avoid a lot of allocations, allocate enough memory for the biggest the escaped query could possibly be. * sizeofquery + (totalparamlength*2) + 1 * * The +1 is for null-terminating the string for PQsendQuery() */ query = new char[req.query.q.length() + (paramlen*2)]; queryend = query; /* Okay, now we have a buffer large enough we need to start copying the query into it and escaping and substituting * the parameters into it... */ for(unsigned int i = 0; i < req.query.q.length(); i++) { if(req.query.q[i] == '?') { /* We found a place to substitute..what fun. * Use the PgSQL calls to escape and write the * escaped string onto the end of our query buffer, * then we "just" need to make sure queryend is * pointing at the right place. */ if(req.query.p.size()) { int error = 0; size_t len = 0; #ifdef PGSQL_HAS_ESCAPECONN len = PQescapeStringConn(sql, queryend, req.query.p.front().c_str(), req.query.p.front().length(), &error); #else len = PQescapeStringConn(queryend, req.query.p.front().c_str(), req.query.p.front().length()); error = 0; #endif if(error) { log(DEBUG, "Apparently PQescapeStringConn() failed somehow...don't know how or what to do..."); } log(DEBUG, "Appended %d bytes of escaped string onto the query", len); /* Incremenet queryend to the end of the newly escaped parameter */ queryend += len; /* Remove the parameter we just substituted in */ req.query.p.pop_front(); } else { log(DEBUG, "Found a substitution location but no parameter to substitute :|"); break; } } else { *queryend = req.query.q[i]; queryend++; } } /* Null-terminate the query */ *queryend = 0; log(DEBUG, "Attempting to dispatch query: %s", query); req.query.q = query; if(PQsendQuery(sql, query)) { log(DEBUG, "Dispatched query successfully"); qinprog = true; DELETE(query); return SQLerror(); } else { log(DEBUG, "Failed to dispatch query: %s", PQerrorMessage(sql)); DELETE(query); return SQLerror(QSEND_FAIL, PQerrorMessage(sql)); } } } log(DEBUG, "Can't query until connection is complete"); return SQLerror(BAD_CONN, "Can't query until connection is complete"); } SQLerror SQLConn::Query(const SQLrequest &req) { queue.push(req); if(!qinprog && queue.totalsize()) { /* There's no query currently in progress, and there's queries in the queue. */ SQLrequest& query = queue.front(); return DoQuery(query); } else { return SQLerror(); } } void SQLConn::OnUnloadModule(Module* mod) { queue.PurgeModule(mod); } void SQLresolver::OnLookupComplete(const std::string &result) { host.host = result; mod->AddConn(host); } class ModulePgSQLFactory : public ModuleFactory { public: ModulePgSQLFactory() { } ~ModulePgSQLFactory() { } virtual Module * CreateModule(Server* Me) { return new ModulePgSQL(Me); } }; extern "C" void * init_module( void ) { return new ModulePgSQLFactory; }