/* * InspIRCd -- Internet Relay Chat Daemon * * Copyright (C) 2009 Daniel De Graaf * Copyright (C) 2008 Craig Edwards * * This file is part of InspIRCd. InspIRCd is free software: you can * redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include "config.h" #include "base.h" class Thread; /** The ThreadEngine class has the responsibility of initialising * Thread derived classes. It does this by creating operating system * level threads which are then associated with the class transparently. * This allows Thread classes to be derived without needing to know how * the OS implements threads. You should ensure that any sections of code * that use threads are threadsafe and do not interact with any other * parts of the code which are NOT known threadsafe! If you really MUST * access non-threadsafe code from a Thread, use the Mutex class to wrap * access to the code carefully. */ class CoreExport ThreadEngine { public: static DWORD WINAPI Entry(void* parameter); /** Create a new thread. This takes an already allocated * Thread* pointer and initializes it to use this threading * engine. On failure, this function may throw a CoreException. * @param thread_to_init Pointer to a newly allocated Thread * derived object. */ void Start(Thread* thread_to_init); }; class CoreExport ThreadData { public: HANDLE handle; void FreeThread(Thread* toFree); }; /** The Mutex class represents a mutex, which can be used to keep threads * properly synchronised. Use mutexes sparingly, as they are a good source * of thread deadlocks etc, and should be avoided except where absolutely * neccessary. Note that the internal behaviour of the mutex varies from OS * to OS depending on the thread engine, for example in windows a Mutex * in InspIRCd uses critical sections, as they are faster and simpler to * manage. */ class CoreExport Mutex { private: CRITICAL_SECTION wutex; public: Mutex() { InitializeCriticalSection(&wutex); } void Lock() { EnterCriticalSection(&wutex); } void Unlock() { LeaveCriticalSection(&wutex); } ~Mutex() { DeleteCriticalSection(&wutex); } }; class ThreadQueueData { CRITICAL_SECTION mutex; HANDLE event; public: ThreadQueueData() { event = CreateEvent(NULL, false, false, NULL); if (event == NULL) throw CoreException("CreateEvent() failed in ThreadQueueData::ThreadQueueData()!"); InitializeCriticalSection(&mutex); } ~ThreadQueueData() { CloseHandle(event); DeleteCriticalSection(&mutex); } void Lock() { EnterCriticalSection(&mutex); } void Unlock() { LeaveCriticalSection(&mutex); } void Wakeup() { PulseEvent(event); } void Wait() { LeaveCriticalSection(&mutex); WaitForSingleObject(event, INFINITE); EnterCriticalSection(&mutex); } }; class ThreadSignalData { public: int connFD; ThreadSignalData() { connFD = -1; } };