/* * InspIRCd -- Internet Relay Chat Daemon * * Copyright (C) 2009 Daniel De Graaf * Copyright (C) 2007-2008 Robin Burchell * Copyright (C) 2005-2007 Craig Edwards * Copyright (C) 2007 Dennis Friis * * This file is part of InspIRCd. InspIRCd is free software: you can * redistribute it and/or modify it under the terms of the GNU General Public * License as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #pragma once #include #include #include #include "config.h" #include "socket.h" #include "base.h" #ifndef _WIN32 #include #endif #ifndef IOV_MAX #define IOV_MAX 1024 #endif /** * Event mask for SocketEngine events */ enum EventMask { /** Do not test this socket for readability */ FD_WANT_NO_READ = 0x1, /** Give a read event at all times when reads will not block. */ FD_WANT_POLL_READ = 0x2, /** Give a read event when there is new data to read. * * An event MUST be sent if there is new data to be read, and the most * recent read/recv() on this FD returned EAGAIN. An event MAY be sent * at any time there is data to be read on the socket. */ FD_WANT_FAST_READ = 0x4, /** Give an optional read event when reads begin to unblock * * This state is useful if you want to leave data in the OS receive * queue but not get continuous event notifications about it, because * it may not require a system call to transition from FD_WANT_FAST_READ */ FD_WANT_EDGE_READ = 0x8, /** Mask for all read events */ FD_WANT_READ_MASK = 0x0F, /** Do not test this socket for writeability */ FD_WANT_NO_WRITE = 0x10, /** Give a write event at all times when writes will not block. * * You probably shouldn't use this state; if it's likely that the write * will not block, try it first, then use FD_WANT_FAST_WRITE if it * fails. If it's likely to block (or you are using polling-style reads) * then use FD_WANT_SINGLE_WRITE. */ FD_WANT_POLL_WRITE = 0x20, /** Give a write event when writes don't block any more * * An event MUST be sent if writes will not block, and the most recent * write/send() on this FD returned EAGAIN, or connect() returned * EINPROGRESS. An event MAY be sent at any time that writes will not * block. * * Before calling OnEventHandler*(), a socket engine MAY change the state of * the FD back to FD_WANT_EDGE_WRITE if it is simpler (for example, if a * one-shot notification was registered). If further writes are needed, * it is the responsibility of the event handler to change the state to * one that will generate the required notifications */ FD_WANT_FAST_WRITE = 0x40, /** Give an optional write event on edge-triggered write unblock. * * This state is useful to avoid system calls when moving to/from * FD_WANT_FAST_WRITE when writing data to a mostly-unblocked socket. */ FD_WANT_EDGE_WRITE = 0x80, /** Request a one-shot poll-style write notification. The socket will * return to the FD_WANT_NO_WRITE state before OnEventHandler*() is called. */ FD_WANT_SINGLE_WRITE = 0x100, /** Mask for all write events */ FD_WANT_WRITE_MASK = 0x1F0, /** Add a trial read. During the next DispatchEvents invocation, this * will call OnEventHandlerRead() unless reads are known to be * blocking. */ FD_ADD_TRIAL_READ = 0x1000, /** Assert that reads are known to block. This cancels FD_ADD_TRIAL_READ. * Reset by SE before running OnEventHandlerRead(). */ FD_READ_WILL_BLOCK = 0x2000, /** Add a trial write. During the next DispatchEvents invocation, this * will call OnEventHandlerWrite() unless writes are known to be * blocking. * * This could be used to group several writes together into a single * send() syscall, or to ensure that writes are blocking when attempting * to use FD_WANT_FAST_WRITE. */ FD_ADD_TRIAL_WRITE = 0x4000, /** Assert that writes are known to block. This cancels FD_ADD_TRIAL_WRITE. * Reset by SE before running OnEventHandlerWrite(). */ FD_WRITE_WILL_BLOCK = 0x8000, /** Mask for trial read/trial write */ FD_TRIAL_NOTE_MASK = 0x5000 }; /** This class is a basic I/O handler class. * Any object which wishes to receive basic I/O events * from the socketengine must derive from this class and * implement the OnEventHandler*() methods. The derived class * must then be added to SocketEngine using the method * SocketEngine::AddFd(), after which point the derived * class will receive events to its OnEventHandler*() methods. * The event mask passed to SocketEngine::AddFd() determines * what events the EventHandler gets notified about and with * what semantics. SocketEngine::ChangeEventMask() can be * called to update the event mask later. The only * requirement beyond this for an event handler is that it * must have a file descriptor. What this file descriptor * is actually attached to is completely up to you. */ class CoreExport EventHandler : public classbase { private: /** Private state maintained by socket engine */ int event_mask; void SetEventMask(int mask) { event_mask = mask; } protected: /** File descriptor. * All events which can be handled must have a file descriptor. This * allows you to add events for sockets, fifo's, pipes, and various * other forms of IPC. Do not change this while the object is * registered with the SocketEngine */ int fd; public: /** Get the current file descriptor * @return The file descriptor of this handler */ inline int GetFd() const { return fd; } inline int GetEventMask() const { return event_mask; } /** Set a new file desciptor * @param FD The new file descriptor. Do not call this method without * first deleting the object from the SocketEngine if you have * added it to a SocketEngine instance. */ void SetFd(int FD); /** Constructor */ EventHandler(); /** Destructor */ virtual ~EventHandler() {} /** Called by the socket engine in case of a read event */ virtual void OnEventHandlerRead() = 0; /** Called by the socket engine in case of a write event. * The default implementation does nothing. */ virtual void OnEventHandlerWrite(); /** Called by the socket engine in case of an error event. * The default implementation does nothing. * @param errornum Error code */ virtual void OnEventHandlerError(int errornum); friend class SocketEngine; }; /** Provides basic file-descriptor-based I/O support. * The actual socketengine class presents the * same interface on all operating systems, but * its private members and internal behaviour * should be treated as blackboxed, and vary * from system to system and upon the config * settings chosen by the server admin. */ class CoreExport SocketEngine { public: /** Socket engine statistics: count of various events, bandwidth usage */ class Statistics { mutable size_t indata; mutable size_t outdata; mutable time_t lastempty; /** Reset the byte counters and lastempty if there wasn't a reset in this second. */ void CheckFlush() const; public: /** Constructor, initializes member vars except indata and outdata because those are set to 0 * in CheckFlush() the first time Update() or GetBandwidth() is called. */ Statistics() : lastempty(0), TotalEvents(0), ReadEvents(0), WriteEvents(0), ErrorEvents(0) { } /** Update counters for network data received. * This should be called after every read-type syscall. * @param len_in Number of bytes received, or -1 for error, as typically * returned by a read-style syscall. */ void UpdateReadCounters(int len_in); /** Update counters for network data sent. * This should be called after every write-type syscall. * @param len_out Number of bytes sent, or -1 for error, as typically * returned by a read-style syscall. */ void UpdateWriteCounters(int len_out); /** Get data transfer statistics. * @param kbitpersec_in Filled with incoming traffic in this second in kbit/s. * @param kbitpersec_out Filled with outgoing traffic in this second in kbit/s. * @param kbitpersec_total Filled with total traffic in this second in kbit/s. */ void CoreExport GetBandwidth(float& kbitpersec_in, float& kbitpersec_out, float& kbitpersec_total) const; unsigned long TotalEvents; unsigned long ReadEvents; unsigned long WriteEvents; unsigned long ErrorEvents; }; private: /** Reference table, contains all current handlers **/ static std::vector ref; /** Current number of descriptors in the engine. */ static size_t CurrentSetSize; /** The maximum number of descriptors in the engine. */ static size_t MaxSetSize; /** List of handlers that want a trial read/write */ static std::set trials; /** Socket engine statistics: count of various events, bandwidth usage */ static Statistics stats; /** Look up the fd limit using rlimit. */ static void LookupMaxFds(); static void OnSetEvent(EventHandler* eh, int old_mask, int new_mask); /** Add an event handler to the base socket engine. AddFd(EventHandler*, int) should call this. */ static bool AddFdRef(EventHandler* eh); static void DelFdRef(EventHandler* eh); template static void ResizeDouble(std::vector& vect) { if (SocketEngine::CurrentSetSize > vect.size()) vect.resize(vect.size() * 2); } public: #ifndef _WIN32 typedef iovec IOVector; #else typedef WindowsIOVec IOVector; #endif /** Constructor. * The constructor transparently initializes * the socket engine which the ircd is using. * Please note that if there is a catastrophic * failure (for example, you try and enable * epoll on a 2.4 linux kernel) then this * function may bail back to the shell. * @return void, but it is acceptable for this function to bail back to * the shell or operating system on fatal error. */ static void Init(); /** Destructor. * The destructor transparently tidies up * any resources used by the socket engine. */ static void Deinit(); /** Add an EventHandler object to the engine. Use AddFd to add a file * descriptor to the engine and have the socket engine monitor it. You * must provide an object derived from EventHandler which implements * the required OnEventHandler*() methods. * @param eh An event handling object to add * @param event_mask The initial event mask for the object */ static bool AddFd(EventHandler* eh, int event_mask); /** If you call this function and pass it an * event handler, that event handler will * receive the next available write event, * even if the socket is a readable socket only. * Developers should avoid constantly keeping * an eventhandler in the writeable state, * as this will consume large amounts of * CPU time. * @param eh The event handler to change * @param event_mask The changes to make to the wait state */ static void ChangeEventMask(EventHandler* eh, int event_mask); /** Returns the number of file descriptors reported by the system this program may use * when it was started. * @return If non-zero the number of file descriptors that the system reported that we * may use. */ static size_t GetMaxFds() { return MaxSetSize; } /** Returns the number of file descriptors being queried * @return The set size */ static size_t GetUsedFds() { return CurrentSetSize; } /** Delete an event handler from the engine. * This function call deletes an EventHandler * from the engine, returning true if it succeeded * and false if it failed. This does not free the * EventHandler pointer using delete, if this is * required you must do this yourself. * @param eh The event handler object to remove */ static void DelFd(EventHandler* eh); /** Returns true if a file descriptor exists in * the socket engine's list. * @param fd The event handler to look for * @return True if this fd has an event handler */ static bool HasFd(int fd); /** Returns the EventHandler attached to a specific fd. * If the fd isnt in the socketengine, returns NULL. * @param fd The event handler to look for * @return A pointer to the event handler, or NULL */ static EventHandler* GetRef(int fd); /** Waits for events and dispatches them to handlers. Please note that * this doesn't wait long, only a couple of milliseconds. It returns the * number of events which occurred during this call. This method will * dispatch events to their handlers by calling their * EventHandler::OnEventHandler*() methods. * @return The number of events which have occured. */ static int DispatchEvents(); /** Dispatch trial reads and writes. This causes the actual socket I/O * to happen when writes have been pre-buffered. */ static void DispatchTrialWrites(); /** Returns true if the file descriptors in the given event handler are * within sensible ranges which can be handled by the socket engine. */ static bool BoundsCheckFd(EventHandler* eh); /** Abstraction for BSD sockets accept(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param addr The client IP address and port * @param addrlen The size of the sockaddr parameter. * @return This method should return exactly the same values as the system call it emulates. */ static int Accept(EventHandler* fd, sockaddr *addr, socklen_t *addrlen); /** Close the underlying fd of an event handler, remove it from the socket engine and set the fd to -1. * @param eh The EventHandler to close. * @return 0 on success, a negative value on error */ static int Close(EventHandler* eh); /** Abstraction for BSD sockets close(2). * This function should emulate its namesake system call exactly. * This function should emulate its namesake system call exactly. * @return This method should return exactly the same values as the system call it emulates. */ static int Close(int fd); /** Abstraction for BSD sockets send(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param buf The buffer in which the data that is sent is stored. * @param len The size of the buffer. * @param flags A flag value that controls the sending of the data. * @return This method should return exactly the same values as the system call it emulates. */ static int Send(EventHandler* fd, const void *buf, size_t len, int flags); /** Abstraction for vector write function writev(). * This function should emulate its namesake system call exactly. * @param fd EventHandler to send data with * @param iov Array of IOVectors containing the buffers to send and their lengths in the platform's * native format. * @param count Number of elements in iov. * @return This method should return exactly the same values as the system call it emulates. */ static int WriteV(EventHandler* fd, const IOVector* iov, int count); #ifdef _WIN32 /** Abstraction for vector write function writev() that accepts a POSIX format iovec. * This function should emulate its namesake system call exactly. * @param fd EventHandler to send data with * @param iov Array of iovecs containing the buffers to send and their lengths in POSIX format. * @param count Number of elements in iov. * @return This method should return exactly the same values as the system call it emulates. */ static int WriteV(EventHandler* fd, const iovec* iov, int count); #endif /** Abstraction for BSD sockets recv(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param buf The buffer in which the data that is read is stored. * @param len The size of the buffer. * @param flags A flag value that controls the reception of the data. * @return This method should return exactly the same values as the system call it emulates. */ static int Recv(EventHandler* fd, void *buf, size_t len, int flags); /** Abstraction for BSD sockets recvfrom(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param buf The buffer in which the data that is read is stored. * @param len The size of the buffer. * @param flags A flag value that controls the reception of the data. * @param from The remote IP address and port. * @param fromlen The size of the from parameter. * @return This method should return exactly the same values as the system call it emulates. */ static int RecvFrom(EventHandler* fd, void *buf, size_t len, int flags, sockaddr *from, socklen_t *fromlen); /** Abstraction for BSD sockets sendto(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param buf The buffer in which the data that is sent is stored. * @param len The size of the buffer. * @param flags A flag value that controls the sending of the data. * @param to The remote IP address and port. * @param tolen The size of the to parameter. * @return This method should return exactly the same values as the system call it emulates. */ static int SendTo(EventHandler* fd, const void *buf, size_t len, int flags, const sockaddr *to, socklen_t tolen); /** Abstraction for BSD sockets connect(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param serv_addr The server IP address and port. * @param addrlen The size of the sockaddr parameter. * @return This method should return exactly the same values as the system call it emulates. */ static int Connect(EventHandler* fd, const sockaddr *serv_addr, socklen_t addrlen); /** Make a file descriptor blocking. * @param fd a file descriptor to set to blocking mode * @return 0 on success, -1 on failure, errno is set appropriately. */ static int Blocking(int fd); /** Make a file descriptor nonblocking. * @param fd A file descriptor to set to nonblocking mode * @return 0 on success, -1 on failure, errno is set appropriately. */ static int NonBlocking(int fd); /** Abstraction for BSD sockets shutdown(2). * This function should emulate its namesake system call exactly. * @param fd This version of the call takes an EventHandler instead of a bare file descriptor. * @param how What part of the socket to shut down * @return This method should return exactly the same values as the system call it emulates. */ static int Shutdown(EventHandler* fd, int how); /** Abstraction for BSD sockets shutdown(2). * This function should emulate its namesake system call exactly. * @return This method should return exactly the same values as the system call it emulates. */ static int Shutdown(int fd, int how); /** Abstraction for BSD sockets bind(2). * This function should emulate its namesake system call exactly. * @return This method should return exactly the same values as the system call it emulates. */ static int Bind(int fd, const irc::sockets::sockaddrs& addr); /** Abstraction for BSD sockets listen(2). * This function should emulate its namesake system call exactly. * @return This method should return exactly the same values as the system call it emulates. */ static int Listen(int sockfd, int backlog); /** Set SO_REUSEADDR and SO_LINGER on this file descriptor */ static void SetReuse(int sockfd); /** This function is called immediately after fork(). * Some socket engines (notably kqueue) cannot have their * handles inherited by forked processes. This method * allows for the socket engine to re-create its handle * after the daemon forks as the socket engine is created * long BEFORE the daemon forks. * @return void, but it is acceptable for this function to bail back to * the shell or operating system on fatal error. */ static void RecoverFromFork(); /** Get data transfer and event statistics */ static const Statistics& GetStats() { return stats; } /** Should we ignore the error in errno? * Checks EAGAIN and WSAEWOULDBLOCK */ static bool IgnoreError(); /** Return the last socket related error. strrerror(errno) on *nix */ static std::string LastError(); /** Returns the error for the given error num, strerror(errnum) on *nix */ static std::string GetError(int errnum); }; inline bool SocketEngine::IgnoreError() { if ((errno == EAGAIN) || (errno == EWOULDBLOCK)) return true; #ifdef _WIN32 if (WSAGetLastError() == WSAEWOULDBLOCK) return true; #endif return false; }